•  
  •  
 

Abstract

Abstract

The study used calibrated Crop Environment Resource Synthesis (CERES) maize (corn) model to simulate maize (corn) physiological growth processes and yields under 2045 and 2075 projected climate change scenarios for six representative counties in Alabama. The future climatologies for two emission scenarios Representative Concentration Pathway (RCP) 4.5 (medium) and RCP 8.5 (high) were developed based on the IPSL-CM5A-MR high resolution climate model. Average yield decreases of 19.5% and 37.3% were, respectively, projected under RCP 4.5 and RCP 8.5 for 2045, and average yield decreases of 32.5% and 77.8% were, respectively, projected under RCP 4.5 and RCP 8.5 for 2075. These yield decreases were largely influenced by increasing temperatures as evidenced by the shortening of various development stages such as anthesis and maturity, which are important determinants of the final grain yield and number. Corn production in Autauga County was projected to be highly vulnerable to climate change, while production in Limestone County was least vulnerable. Corn crops in Alabama appear to be sensitive to climate change and will require adaptation strategies.

Keywords: Climate Change, CERES-Maize model, General Circulation Model (GCM), Representative Concentration Pathway (RCP) emission scenarios.

COinS